Weighted restriction estimates using polynomial partitioning

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distinct Distance Estimates and Low Degree Polynomial Partitioning

We give a shorter proof of a slightly weaker version of a theorem fromGuth and Katz (Ann Math 181:155–190, 2015): we prove that if L is a set of L lines in R3 with at most L1/2 lines in any low degree algebraic surface, then the number of r -rich points of L is L(3/2)+εr−2. This result is one of the main ingredients in the proof of the distinct distance estimate in Guth and Katz (2015). With ou...

متن کامل

Chapter 3: Polynomial Partitioning

Consider a set P of m points in R. Given a polynomial f ∈ R[x1, . . . , xd], we define the zero set of f to be Z(f) = {p ∈ R | f(p) = 0}. For any r > 1, we say that f ∈ R[x1, . . . , xd] is an r-partitioning polynomial for P if every connected component of R \ Z(f) contains at most m/r points of P.1 Notice that there is no restriction on the number of points of P that lie in Z(f). Figure 1 depi...

متن کامل

Essential norm estimates of generalized weighted composition operators into weighted type spaces

Weighted composition operators appear in the study of dynamical systems and also in characterizing isometries of some classes of Banach spaces. One of the most important generalizations of weighted composition operators, are generalized weighted composition operators which in special cases of their inducing functions give different types of well-known operators like: weighted composition operat...

متن کامل

Multipliers and weighted ∂-estimates

We study estimates for the solution of the equation ∂u = f in one variable. The new ingredient is the use of holomorphic functions with precise growth restrictions in the construction of explicit solutions to the equation.

متن کامل

Symbolic computation of weighted Moore-Penrose inverse using partitioning method

We propose a method and algorithm for computing the weighted MoorePenrose inverse of one-variable rational matrices. Continuing this idea, we develop an algorithm for computing the weighted Moore-Penrose inverse of one-variable polynomial matrix. These methods and algorithms are generalizations of the method or computing the weighted Moore-Penrose inverse for constant matrices, originated in [2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the London Mathematical Society

سال: 2017

ISSN: 0024-6115

DOI: 10.1112/plms.12046